ERLANG

System Architecture Support Libraries
(SASL)

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

System Architecture Support Libraries (SASL) 4.2.1
July 17, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

July 17, 2025

1.1 Introduction

1 SASL User's Guide

The System Architecture Support Libraries SASL application provides support for alarm handling, release handling,
and related functions.

1.1 Introduction

1.1.1 Scope

The SASL application provides support for:

e Error logging

e Alarm handling

* Reease handling
* Report browsing

Section SASL Error Logging describes the error handler that produces the supervisor, progress, and crash reports,
which can be written to screen or to a specified file. It also describes the Report Browser (RB).

The sections about rel ease structure and rel ease handling have been moved to section OTP Design Principlesin System
Documentation.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.
1.2 SASL Error Logging

The SASL error logging concept described in this section is deprecated since Erlang/OTP 21.0, when the new
logging API was introduced.

The new default behaviour is that the SASL application no longer affects which log events that are logged.
Supervisor reports and crash reports are logged via the default logger handler which is setup by Kernel. Progress
reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example by
using the Kernel configuration parameter | ogger _| evel .

The old SASL error logging behaviour can be re-enabled by setting the Kernel configuration parameter
| ogger _sasl _conpati bl etot rue.

The mechanism for multi-file error report logging as described in this section is also kept for backwards
compatibility. However, the new logging APl also introduces | ogger _di sk_I og_h(3), which is a logger
handler that can print to multiple filesusing di sk_I og(3) .

1.2.1 SASL reports

The SASL application introduces three types of reports:
* Supervisor report

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 1

1.2 SASL Error Logging

e Progressreport

e Crashreport

When the SASL application is started, it adds a Logger handler that formats and writes these reports, as specified in
the configuration parameters for SASL.

Supervisor Report

A supervisor report is issued when a supervised child terminates unexpectedly. A supervisor report contains the
following items:

Super vi sor
Name of the reporting supervisor.
Cont ext

Indicates in which phase the child terminated from the supervisor's point of view. Thiscanbestart _error,
chil d_t erm nat ed, or shut down_error.

Reason
Termination reason.
O f ender
Start specification for the child.

Progress Report
A progress report isissued when a supervisor starts or restarts achild. A progress report contains the following items:
Super vi sor
Name of the reporting supervisor.
Started
Start specification for the successfully started child.

Crash Report

Processes started with functions pr oc_1 i b: spawn or proc_l i b: spawn_I i nk are wrapped within acat ch.
A crash report is issued when such a process terminates with an unexpected reason, which is any reason other
than nor mal , shut down, or { shut down, Ter n}. Processes using behaviors gen_server, gen_fsmor
gen_st at emare examples of such processes. A crash report contains the following items:

Crasher
Information about the crashing process, such asinitial function call, exit reason, and message queue.
Nei ghbour s

Information about processes that are linked to the crashing process and do not trap exits. These processes are the
neighbours that terminate because of this process crash. The information gathered is the same as the information
for Crasher, described in the previous item.

Example

The following example shows the reports generated when a process crashes. The example processisaper manent
process supervised by thet est _sup supervisor. A division by zero is executed and the error is first reported by
thefaulty process. A crash report is generated, as the process was started using function pr oc_| i b: spawn/ 3. The
supervisor generates a supervisor report showing the crashed process. A progressreport is generated when the process
isfinally restarted.

2 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

1.2 SASL Error Logging

=ERROR REPORT==== 27- May-1996: :13: 38: 56 ===
<0.63.0>: Divide by zero !

=CRASH REPORT==== 27- May-1996::13: 38: 56 ===
crasher:

pi d: <0.63. 0>
regi stered_nane: []
error_info: {badarith,{test,s,[]}}

initial _call: {test,s,[]}
ancestors: [test_sup, <0.46.0>]
nessages: []

l'inks: [<0.47.0>]
dictionary: []
trap_exit: false
status: running
heap_si ze: 128
stack_size: 128
reductions: 348
nei ghbours:

=SUPERVI SOR REPORT==== 27- May-1996:: 13: 38: 56 ===
Supervi sor: {local,test_sup}

Cont ext : child_term nated

Reason: {badarith,{test,s,[]}}

O f ender: [{pid, <0.63.0>},

{nane, test},
{nfa,{test,t,[]}},
{restart_type, permanent},
{'shut down, 200},
{child_type, worker}]

=PROGRESS REPORT==== 27- May- 1996: : 13: 38: 56 ===
Supervi sor: {local,test_sup}

Started: [{pid,<0.64.0>},

{nane, test},

{nfa,{test,t,[]}},

{restart_type, permanent},

{'shut down, 200},

{child_type, worker}]

1.2.2 Multi-File Error Report Logging

Multi-file error report logging is used to store error messages received by er r or _| ogger . The error messages are
stored in several files and each file is smaller than a specified number of kilobytes. No more than a specified number
of files exist at the same time. Thelogging is very fast, as each error message is written as a binary term.

For more details, seethe sasl (6) application in the Reference Manual.

1.2.3 Report Browser

The report browser is used to browse and format error reports written by the error logger handler | og_nf _h defined
in STDLIB.

Thel og_nf _h handler writesall reportsto areport logging directory, which is specified when configuring the SASL
application.

If the report browser is used offline, the reports can be copied to another directory specified when starting the browser.
If no such directory is specified, the browser reads reports from the SASL error _| ogger _nf _dir.

Starting Report Browser

Start ther b_ser ver with functionr b: start ([Opti ons]) asshown in thefollowing example:

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 3

1.2 SASL Error Logging

5> rb:start([{max, 20}]).
rb: reading report...done
rb: reading report...done
rb: reading report...done
rb: reading report...done
{ ok, <0. 199. 0>}

Online Help
Enter command r b: hel p() to accessthe report browser online help system.

List Reports in Server
Usefunctionr b: |'i st () tolistall loaded reports:

4> rb:list().

No Type Process Dat e Ti ne
20 progress <0. 17. 0> 1996-10-16 16: 14:54
19 pr ogress <0. 14. 0> 1996-10-16 16: 14:55
18 error <0. 15. 0> 1996-10-16 16: 15: 02
17 progress <0. 14. 0> 1996-10-16 16: 15: 06
16 progress <0. 38. 0> 1996-10-16 16:15:12
15 progress <0.17.0> 1996-10-16 16:16: 14
14 progress <0. 17. 0> 1996-10-16 16:16: 14
13 progress <0.17.0> 1996-10-16 16:16: 14
12 progress <0. 14. 0> 1996-10-16 16: 16: 14
11 error <0. 17. 0> 1996-10-16 16:16: 21
10 error <0. 17. 0> 1996-10-16 16:16: 21
9 crash_report release_handl er 1996-10-16 16: 16: 21

8 supervi sor _report <0.17.0> 1996-10-16 16:16: 21

7 progress <0. 17. 0> 1996-10-16 16:16: 21

6 progress <0. 17. 0> 1996-10-16 16: 16: 36

5 progress <0.17. 0> 1996-10-16 16: 16: 36

4 progress <0. 17. 0> 1996-10-16 16: 16: 36

3 pr ogress <0. 14. 0> 1996-10-16 16: 16: 36

2 error <0.15. 0> 1996-10-16 16:17: 04

1 progress <0. 14. 0> 1996-10-16 16:17:09

ok

Show Reports
Usefunction r b: show(Nurnber) to show details of a specific report:

4 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

1.2 SASL Error Logging

7> rb: show(4).

PROGRESS REPORT

<0. 20. 0> 1996-10- 16 16: 16: 36

supervi sor
started
[{pid, <0.24.0>},

{l ocal , sasl _sup}

{nane, rel ease_handl er},
{nfa,{rel ease_handler,start_link,[]}},
{restart_type, permanent},

{'shut down, 2000},

{chil d_type, worker}]

ok
8> rb:show(9).

CRASH REPORT <0. 24. 0> 1996-10-16 16:16:21

Crashi ng process

pid
regi stered_nane
error_info

<0. 24. 0>
rel ease_handl er
{undef, {rel ease_handl er, mbj _func,[]}}

initial _cal
{gen,init_it

[gen_server,

<0. 20. 0>,

<0. 20. 0>,

{erl ang, register},
rel ease_handl er,
rel ease_handl er,

(1.

(11}

ancestors [sasl _sup, <0. 18. 0>]
nessages []
l'i nks [<0. 23. 0>, <0. 20. 0>]
di ctionary []
trap_exit fal se
stat us runni ng
heap_si ze 610
stack_si ze 142
reductions 54
ok

Search Reports

All reports containing acommon pattern can be shown. Suppose a process crashes becauseit triesto call anon-existing
functionr el ease_handl er: nbj _func/ 1. The reports can then be shown as follows:

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 5

1.2 SASL Error Logging

12> rb: grep("nbj _func")
Found match in report nunber 11

ERROR REPORT <0. 24. 0>

1996-10-16 16:16:21

** undefined function: rel ease_handl er: mbj _func[] **
Found match in report nunber 10

ERROR REPORT <0. 24. 0>

1996-10-16 16:16:21

** Ceneric server release_handl er term nating
** Last message in was {unpack_rel ease, hej}
** \When Server state == {state,[],

"/ home/ dup/ ot p2/ ot p_beam sunos5_plg_7",
[{rel ease,

"OrP APN 181 01",

"P1G',

undef i ned,

(1,

pernmanent}],

undef i ned}

** Reason for termination ==

** {undef, {rel ease_handl er, nbj _func,[]}}
Found match in report nunber 9

CRASH REPORT <0. 24. 0>

1996-10-16 16:16: 21

Crashi ng process
pid
regi st ered_nane

<0. 24. 0>
rel ease_handl er

error_info {undef, {rel ease_handl er, nbj _func,[]}}

initial _cal
{gen,init_it,
[gen_server,

<0. 20. 0>,

<0. 20. 0>,

{erl ang, register},
rel ease_handl er,
rel ease_handl er,
[1.

[11}

ancestors
nmessages
l'i nks

di ctionary
trap_exit
st at us
heap_si ze
stack_si ze
reduct i ons

Found match in report nunber 8

SUPERVI SOR REPORT <0. 20. 0>

[sasl _sup, <0. 18. 0>]

[]

[<0. 23. 0>, <0. 20. 0>]

[]

fal se
runni ng
610

142

54

1996-10-16 16:16: 21

Reporting supervi sor

Child process
err or Cont ext

{l ocal , sasl _sup}

child_term nated

reason {undef, {rel ease_handl er, nbj _func,[]}}
pid <0. 24. 0>
nane rel ease_handl er

6 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

1.2 SASL Error Logging

start_function {rel ease_handl er,start_link,[]}
restart _type per manent
shut down 2000
child_type wor ker
ok

Stop Server

Usefunctionr b: st op() tostoptherb_server:

13> rb:stop().
ok

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 7

1.2 SASL Error Logging

2 Reference Manual

The SASL application provides support for alarm handling, release handling, and related functions.

8 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

sasl

sasl
Application

The SASL application provides the following services:

e alarm handl er
« rel ease_handl er
e systools

‘ The SASL application in OTP has nothing to do with "Simple Authentication and Security Layer" (RFC 4422). ‘

Configuration

The following configuration parameters are defined for the SASL application. For more information about
configuration parameters, seeapp(4) inKerndl.

All configuration parameters are optional .
start_prg = string()

Specifies the program to be used when restarting the system during release installation. Default is $OTPROOT/
bin/start.

masters = [atom()]

Specifies the nodes used by this node to read/write release information. This parameter isignored if parameter
client_directory isnot set.

client_directory = string()

Thisparameter specifiestheclient directory at the master nodes. For details, see Release Handlingin OTP Design
Principles. This parameter isignored if parameter mast er s isnot set.

static_emrmulator = true | fal se

Indicatesif the Erlang emulator is statically installed. A node with a static emulator cannot switch dynamically to
anew emulator, asthe executable files are written into memory statically. This parameter isignored if parameters
mast ers andcl i ent _directory arenot set.

rel eases _dir = string()

Indicateswherether el eases directory islocated. Therelease handler writesal itsfilesto thisdirectory. If this
parameter isnot set, the OS environment parameter RELDI Risused. By default, thisis$OTPROOT/ r el eases.

Deprecated Error Logger Event Handlers and Configuration

In Erlang/OTP 21.0, anew API for logging was added. Theold er r or _| ogger event manager, and event handlers
running on this manager, still work, but they are not used by default.

The error logger event handlers sasl _report _tty h and sasl _report_file_h, were earlier used for
printing the so called SASL reports, i.e. supervisor reports, crash reports, and progress reports. These reports
are now also printed by the default logger handler started by the Kernel application. Progress reports are by default
stopped by the primary log level, but can be enabled by setting this level to i nf o, for example by using the Kernel
configuration parameter | ogger _| evel .

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 9

sasl

If the old error logger event handlers are dill desired, they must be added by calling
error _| ogger:add_report_handler/1, 2.

sasl _report_tty h

Formats and writes supervisor reports, crash reports, and progressreportstost di 0. Thiserror logger event
handler useser r or _| ogger _f or mat _dept h in the Kernel application to limit how much detail is printed
in crash and supervisor reports.

sasl _report _file_h

Formats and writes supervisor reports, crash report, and progress report to a single file. This error logger
event handler useser r or _| ogger _f ormat _dept h in the Kernel application to limit the details printed in
crash and supervisor reports.

A similar behaviour, but still using the new logger API, can be obtained by setting the Kernel application environment
variablel ogger _sasl _conpati bl etot r ue. Thisaddsasecond instance of the standard L ogger handler, named
sasl , which only printsthe SASL reports. No SASL reports are then printed by the Kernel logger handler.

Thesasl| handler is configured according to the values of the following SASL application environment variables.
sasl _error_l ogger = Val ue
Val ue isone of the following:
tty
Installssasl _report _tty hintheerror logger. Thisisthe default option.
{file, FileNane}

Installssasl _report _fil e_hintheerror logger. All reports go to file Fi | eNamre, which isastring.
Thefileisopened inwr i t e mode with encoding ut f 8.

{file, Fil eName, Mbdes}

Sameas{fil e, Fi | eNane}, except that Modes allows you to specify the modes used for opening the
Fi | eName giventothefile:open/2 call. By default, thefileisopenedinwr i t € modewith encoding ut f 8.
Use[append] to havethe Fi | eNare open in append mode. A different encoding can also be specified.
Fi | eName isastring.

fal se
No SASL error logger handler isinstalled.
errlog_type = error | progress | all

Restricts the error logging performed by the specified sasl _error _| ogger to error reports or progress
reports, or both. Default isal | .

utc_log = true | false

If settotrue, all datesin textual log outputs are displayed in Universal Coordinated Time with the string UTC
appended.

Theerror logger event handler | og_nf _h can also till be used. This event handler writes all events sent to the error
logger to disk. Multiple files and log rotation are used. For efficiency reasons, each event is written as a binary. For
more information about this handler, see the STDLIB Reference Manual.

To activate this event handler, three SASL configuration parameters must be set:
error_logger_nf_dir = string() | false

Specifies in which directory | og_nf _h is to store its files. If this parameter is undefined or f al se, the
I og_nf _h handler isnot installed.

10 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

sasl

error_|l ogger _nf _maxbytes = integer()

Specifies the maximum size of each individua file written by | og_nf _h. If this parameter is undefined, the
| og_nf _h handler isnot installed.

error _| ogger _nf_maxfiles = 0O<integer()<256

Specifies the number of filesused by | og_nf _h. If this parameter is undefined, thel og_nf _h handler is not
installed.

Thenew | ogger _di sk_| og_h mightbeanalternativetol og_nf _h if log rotation isdesired. Thisdoes, however,
write the log eventsin clear text and not as binaries.

See Also

al arm _handl er (3) ,error _| ogger (3),l ogger(3),l og_nf_h(3),rb(3),rel ease_handl er (3),
syst ool s(3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 11

alarm_handler

alarm_handler

Erlang module

Theaarm handler processisagen_event event manager process that receives alarmsin the system. This processis
not intended to be a complete alarm handler. It defines a place to which alarms can be sent. One simple event handler
isinstalled in the alarm handler at startup, but users are encouraged to write and install their own handlers.

The simple event handler sends all alarms as info reports to the error logger, and saves all in alist. This list can
be passed to a user-defined event handler, which can be installed later. The list can grow large if many alarms are
generated. Thisisagood reason to install a better user-defined handler.

Functions are provided to set and clear alarms. The alarm format is defined by the user. For example, an event handler
for SNMP can be defined, together with an alarm Management Information Base (MI1B).

The alarm handler is part of the SASL application.
When writing new event handlers for the alarm handler, the following events must be handled:
{set _alarm {Alarmd, AlarnmDescr}}
Thisevent isgenerated by al ar m handl er: set _al arm({Al arnml d, Al arnDecsr}).
{clear_alarm Al arm d}
Thisevent isgenerated by al ar m_handl er: cl ear _al arm(Al arm d) .

The default simple handler is «cdled alarm handl er and it can be exchanged
by «cdling gen_event:swap_handler/3 as gen_event:swap_handl er (al arm handl er,
{al ar m_handl er, swap}, { NewHandl er, Args}). NewHandl er:init({Args,
{al arm handl er, Al arns}}) iscalled. For more details, seegen_event (3) in STDLIB.

Exports

clear _alarmAlarm d) -> void()
Types:

Alarmd = term))
Sendsevent cl ear _al ar mto all event handlers.

When receiving this event, the default simple handler clears the latest received alarm with id Al ar m d.

get _alarnms() -> [alarm()]
Returnsalist of all active alarms. This function can only be used when the ssmple handler isinstalled.

set _alarm(alarn())

Types:
alarn() = {Alarm d, Al arnmDescription}
Alarmd = tern()
Al armDescription = tern()

Sendsevent set _al ar mto all event handlers.

When receiving this event, the default simple handler stores the alarm. Al ar ml d identifies the alarm and is used
when the alarmis cleared.

12 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

alarm_handler

See Also

error _| ogger(3),gen_event (3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 13

rb

rb

Erlang module

The Report Browser (RB) tool isused to browse and format error reportswritten by theerror logger handlerl og_nf _h
in STDLIB.

Exports

filter(Filters)
filter(Filters, Dates)
Types:

Filters = [filter()]

filter() = {Key, Value} | {Key, Value, no} | {Key, RegkExp, re} | {Key,
RegExp, re, no}

Key = term)

Value = term)

RegExp = string() | {string(), Options} | re:np() | {re:mp(), Options}
Dates = {DateFrom DateTo} | {DateFrom fron} | {DateTo, to}
Dat eFrom = Dat eTo = cal endar: dateti ne()

Displays the reports that match the provided filters.
When afilter includes the no atom, it excludes the reports that match that filter.

The reports are matched using the pr opl i st s module in STDLIB. The report must be a proplist to be matched
against any of thefilters.

If thefilter hastheform { Key, RegExp, r e}, thereport must contain an element with key equal to Key and the
value must match the regular expression RegExp.

If parameter Dat es is specified, the reports are filtered according to the date when they occurred. If Dat es hasthe
form { Dat eFr om front, reportsthat occurred after Dat eFr omare displayed.

If Dat es hastheform { Dat eTo, t 0}, reportsthat occurred before Dat eTo are displayed.
If two Dat es are specified, reports that occurred between those dates are returned.

To filter only by dates, specify the empty list astheFi | t er s parameter.

For details about parameter RegExp, seer b: grep/ 1.

For details about datatype np() , seere: mp() .

For details about datatype dat et i ne(), seecal endar: dateti me().

gr ep(RegExp)
Types:
RegExp = string() | {string(), Options} | re:np() | {re:nmp(), Options}
All reports matching the regular expression RegExp are displayed. RegExp can be any of the following:
e A string containing the regular expression
* A tuplewith the string and the options for compilation
* A compiled regular expression

14 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

rb

* A compiled regular expression and the options for running it

For a definition of valid regular expressions and options, see the r e module in STDLIB and in particular function
re:run/ 3.

For details about datatype np() , seere: mp() .

h()
hel p()
Displays online help information.

list()
list(Type)
Types:
Type = type()
type() = error | error_report | info_nsg | info_report | warning_mnsg |

war ni ng_report | crash_report | supervisor_report | progress

Listsall reportsloaded inr b_ser ver . Each report is given a unique number that can be used as a reference to the
report in function show' 1.

If no Type is specified, al reports are listed.

log_list()
log list(Type)
Types.
Type = type()
type() = error | error_report | info_nsg | info_report | warning_nsg |
warni ng_report | crash_report | supervisor_report | progress
Sameasfunctions! i st/ 0orli st/ 1,buttheresultisprintedtoalogfile, if set; otherwiseto st andar d_i o.

If no Type is specified, all reports are listed.

rescan()
rescan(Opti ons)
Types.

Options = [opt()]

Rescans the report directory. Opt i ons isthe sameasfor functionst art/ 1.

show()
show(Report)
Types:
Report = integer() | type()
If argument t ype is specified, al loaded reports of this type are displayed. If an integer argument is specified, the
report with this reference number is displayed. If no argument is specified, al reports are displayed.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 15

rb

start ()

start (Options)

Types:
Options = [opt()]
opt() = {start_log, FileNane} | {max, MaxNoOf Reports} | {report_dir,
DirString} | {type, ReportType} | {abort_on_error, Bool}

FileName = string() | atom() | pid()
MaxNoCOf Reports = integer() | all
DirString = string()

Report Type = type() | [type()] | all
Bool = bool ean()

Function st art/ 1 startsr b_ser ver with the specified options, whereas function st art / 0 starts with default
options. r b_ser ver must be started before reports can be browsed. Whenr b_ser ver is started, the filesin the
specified directory are scanned. The other functions assume that the server has started.

Options:
{start | og, FileNane}

Startsloggingtofile, registered name, ori o_devi ce. All reportsare printed to the specified destination. Default
isstandard_i o.Option{start | og, standard_error} isnotalowedandwill bereplaced by default
standard_i o.

{max, MaxNoCOf Report s}

Controls how many reportsr b_ser ver istoread at startup. This option isuseful, asthe directory can contain a
large amount of reports. If thisoption isspecified, the MaxNoCOf Repor t s latest reportsareread. Defaultisal | .

{report _dir, DirString}

Defines the directory where the error log files are located. Default is the directory specified by application
environment variableer r or _| ogger _nf _di r, see sadl(6).

{type, ReportType}
Controls what kind of reportsr b_ser ver istoread at startup. Report Type is a supported type, al | , or a
list of supported types. Defaultisal | .

{abort_on_error, Bool}

Specifiesif logging isto be ended if r b encounters an unprintable report. (Y ou can get areport with an incorrect
form if functionerr or _| ogger,error _mnsg, ori nf o_nsg has been called with an invalid format string)

e IfBool istrue,rb stopslogging (and prints an error message to st dout) if it encounters a badly
formatted report. If logging to file is enabled, an error message is appended to the log file as well.

« If Bool isf al se (thedefault value), r b prints an error message to st dout for every bad report it
encounters, but the logging process is never ended. All printable reports are written. If logging tofileis
enabled, r b prints* UNPRI NTABLE REPORT * inthelogfile at the location of an unprintable report.

start _| og(Fil eNane)
Types:
FileName = string() | atom() | pid()
Redirects all report output from the RB tool to the specified file, registered name, ori 0_devi ce.

16 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

rb

stop()
Stopsr b_server.

stop_l og()
Closesthelog file. The output from the RB tool isdirected to st andar d_i o.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 17

release_handler

release handler

Erlang module

The release handler process belongs to the SASL application, which is responsible for release handling, that is,
unpacking, installation, and removal of release packages.

Anintroduction to release handling and an exampleis provided in OTP Design Principlesin System Documentation.

A release package is a compressed tar file containing code for a certain version of a release, created by calling
syst ool s: make_tar/ 1, 2. The release package is to be located in the $ROOT/ r el eases directory of the
previous version of the release, where $ROOT is the instalation root directory, code: r oot _di r () . Another
rel eases directory can be specified using the SASL configuration parameter r el eases_dir or the OS
environment variable RELDI R. The release handler must have write access to this directory to install the new release.
The persistent state of the release handler is stored therein afile called RELEASES.

A release package is always to contain:;
* Avreleaseresourcefile, Name. r el
e A boot script, Name. boot

The. r el file contains information about the release: its name, version, and which ERTS and application versions
it uses.

A release package can also contain:

» Avrdeaseupgradefile rel up
* A system configuration file, sys. confi g
* A system configuration sourcefile, sys. confi g. src

Ther el up file contains instructions for how to upgrade to, or downgrade from, this version of the release.

The release package can be unpacked, which extracts the files. An unpacked release can be installed. The currently
used version of the release is then upgraded or downgraded to the specified version by evaluating the instructions in
ther el up file. Aninstalled rel ease can be made per manent. Only one permanent rel ease can exist in the system, and
thisreleaseisused if the system is restarted. An installed release, except the permanent one, can be removed. When
arelease isremoved, all files belonging to that release only are del eted.

Each release version has a status, which can be unpacked, curr ent , per manent , or ol d. There is always one
latest rel ease, which either hasstatusper manent (normal case) or cur r ent (installed, but not yet made permanent).
The meaning of the status values are illustrated in the following table:

St at us Action Next St at us

- unpack unpacked

unpacked install current
renove -

current meke_per manent per manent
install other ol d
renmove -

permanent neke ot her pernmanent old
install per manent

ol d reboot _old per manent
install current
renmove -

The release handler processis alocally registered process on each node. When arelease isinstalled in a distributed
system, the release handler on each node must be called. The release installation can be synchronized between nodes.

18 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

From an operator view, it can be unsatisfactory to specify each node. The aim is to install one release package in
the system, no matter how many nodes there are. It is recommended that software management functions are written
that take care of this problem. Such a function can have knowledge of the system architecture, so it can contact each
individual release handler to install the package.

For release handling to work properly, the runtime system must know which releaseit isrunning. It must also be able
to change (in runtime) which boot script and system configuration file are to be used if the system is restarted. This
is taken care of automatically if Erlang is started as an embedded system. Read about this in Embedded System in
System Documentation. In this case, the system configuration file sys. conf i g is mandatory.

Theinstallation of a new release can restart the system. Which program to use is specified by the SASL configuration
parameter st art _pr g, which defaultsto $ROOT/ bi n/ st art .

The emulator restart on Windows NT expects that the system is started using the er | sr v program (as a service).
Furthermore, the release handler expects that the service is named NodeNane_Rel ease, where NodeNane isthe
first part of the Erlang node name (up to, but not including the "@") and Rel ease is the current release version.
Therelease handler furthermore expectsthat aprogramlikest art _er | . exe isspecified as"machine" toer | srv.
During upgrading with restart, anew service isregistered and started. The new serviceis set to automatic and the old
service is removed when the new release is made permanent.

The release handler at a node running on a diskless machine, or with a read-only file system, must be configured
accordingly using the following SASL configuration parameters (for details, see sasl(6)):

masters

This node uses some master nodes to store and fetch release information. All master nodes must be operational
whenever release information is written by this node.

client_directory
Thecl i ent _di rect ory inthedirectory structure of the master nodes must be specified.
static_emul at or

This parameter specifies if the Erlang emulator is statically installed at the client node. A node with a static
emulator cannot dynamically switch to anew emulator, asthe executablefiles are statically written into memory.

The release handler can also be used to unpack and install rel ease packages when not running Erlang as an embedded
system. However, in this case the user must somehow ensure that correct boot scripts and configuration files are used
if the system must be restarted.

Functions are provided for using another file structure than the structure defined in OTP. These functions can be used
to test arelease upgrade locally.

Exports

check_install _rel ease(Vsn) -> {ok, QherVsn, Descr} | {error, Reason}
check _install _release(Vsn, Opts) -> {ok, OtherVsn, Descr} | {error, Reason}
Types:

Vsn = GtherVsn = string()

Opts = [Opt]

Opt = purge

Descr = tern()

Reason = term()

Checks if the specified version Vsn of the release can be installed. The release must not have status cur r ent .
Issueswarningsif r el up fileor sys. confi g isnot present. If r el up fileis present, its contents are checked and

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 19

release_handler

{error, Reason} isreturned if an error isfound. Also checksthat all required applications are present and that all
new code can be loaded; { er r or , Reason} isreturned if an error isfound.

Evaluates al instructions that occur before the poi nt _of _no_r et ur n instruction in the rel ease upgrade script.

Returnsthesameasi nstal | _rel ease/ 1. Descr defaultsto ™" if nor el up fileisfound.

If option pur ge is specified, all old code that can be soft-purged is purged after all other checks are successfully
completed. This can be useful to reducethetimeneeded by i nstal | _rel ease/ 1.

create RELEASES(Rel Dir, RelFile, AppDirs) -> ok | {error, Reason}
create_RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}
Types:

Root = RelDir = Rel File = string()

AppDirs = [{App, Vsn, Dir}]

App = aton()

Vsn = Dir = string()

Reason = term()
Creates an initial RELEASES file to be used by the release handler. Thisfile must exist to install new releases.

Root isthe root of the installation ($ROO0T) as described earlier. Rel Di r is the directory where the RELEASES
fileisto be created (normally $ROOT/ r el eases). Rel Fi | e isthename of the. r el filethat describestheinitia
release, including the extension . r el . If Root is not given, the RELEASES file will be location independent (i.e,
it will not contain absolute paths unless there are absolute paths in AppDi r s). A RELEASES file should be made
location independent if theinstallation's SROOT isunknown. Ther el ease_handl er modulewill interpret relative
paths in arunning system's RELEASES file as being relative to $ROOT.

AppDi r s can be used to specify from where the modules for the specified applications are to be loaded. App isthe
name of an application, Vsn is the version, and Di r is the name of the directory where App- Vsn is located. The
corresponding modules are to be located under Di r / App- Vsn/ ebi n. The directories for applications not specified
in AppDi r s are assumed to be located in SROOT/ | i b.

install _file(Vsn, File) -> ok | {error, Reason}
Types.

Vsn = File = string()

Reason = term()

Installs a release-dependent file in the release structure. The release-dependent file must be in the release structure
when anew releaseisinstalled: st art . boot , r el up,andsys. confi g.

The function can be called, for example, when these files are generated at the target. The function isto be called after
set _unpacked/ 2 hasbeen called.

install _release(Vsn) -> {ok, O herVsn, Descr} | {error, Reason}

install _release(Vsn, [Opt]) -> {ok, QtherVsn, Descr} |
{continue_after_restart, QherVsn, Descr} | {error, Reason}

Types:
Vsn = GtherVsn = string()
Opt = {error_action, Action} | {code_change tineout, Tineout}

| {suspend_tineout, Timeout} | {update_paths, Bool}
Action = restart | reboot

20 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

Tinmeout = default | infinity | pos_integer()
Bool = bool ean()
Descr = tern()

Reason = {illegal option, Opt} | {already_installed, Vsn} |
{change_appl _data, tern()} | {m ssing_base_app, OQherVsn, App} |
{coul d_not _create_hybrid_boot, term()} | term)

App = aton()

Installs the specified version Vsn of the release. Looks first for a rel up file for Vsn and a script
{UpFronVsn, Descr 1, | nstructionsl} inthisfilefor upgrading from the current version. If not found, the
function looksfor ar el up filefor the current version and ascript { Vsn, Descr 2, | nstructi ons2} inthisfile
for downgrading to Vsn.

If ascript isfound, the first thing that happensisthat the application specifications are updated according to the . app
filesand sys. confi g belonging to the release version Vsn.

After the application specifications have been updated, the instructions in the script are evaluated and the function
returns{ ok, & her Vsn, Descr } if successful. & her Vsn and Descr aretheversion (UpFr omsn or Vsn) and
description (Descr 1 or Descr 2) as specified in the script.

If {continue_after_restart, G herVsn, Descr} isreturned, the emulator is restarted before the upgrade
instructions are executed. Thisoccursif the emulator or any of the applicationsKernel, STDLIB, or SASL are updated.
Thenew emulator version and these core applications execute after therestart. For all other applicationsthe old versions
are started and the upgrade is performed as hormal by executing the upgrade instructions.

If arecoverable error occurs, the function returns{ er r or , Reason} and the original application specifications are
restored. If anon-recoverable error occurs, the system is restarted.

Options:
error_action

Definesif thenodeistoberestarted (i ni t: restart ()) or rebooted (i ni t: reboot ()) if thereisan error
during the installation. Default isr est art .

code_change_ti meout

Definesthe time-out for al callsto sys: change_code. If no valueis specified or def aul t is specified, the
default value defined in sy's is used.

suspend_ti meout

Definesthetime-out for all callstosys: suspend. If novalueis specified, the values defined by the Ti nmeout
parameter of theupgr ade or suspend instructionsareused. If def aul t isspecified, the default value defined
insys isused.

{updat e_pat hs, Bool }

Indicates if all application code paths are to be updated (Bool ==t r ue) or if only code paths for modified
applications are to be updated (Bool ==f al se, default). This option has only effect for other application
directories than the default $ROOT/ | i b/ App- Vsn, that is, application directories specified in argument
AppDi rsinacal tocreat e RELEASES/ 4 or set _unpacked/ 2.

Example:

In the current version Cur Vsn of arelease, the application directory of myapp is$ROOT/ | i b/ nyapp- 1. 0.
A new version NewVsn is unpacked outside the release handler and the release handler is informed about this
with acall asfollows:

rel ease_handl er: set _unpacked(Rel File, [{myapp,"1.0","/hone/user"},...]).
=> { ok, Newsn}

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 21

release_handler

If NewVsn is installed with option { updat e_pat hs, t rue}, then code: i b_di r (myapp) returns /
hone/ user/ nmyapp- 1. 0.

Installing a new release can be time consuming if there are many processes in the system. The reason is that each
process must be checked for references to old code before amodule can be purged. This check can lead to garbage
collections and copying of data.

To speed up the execution of i nstal | _rel ease, first call check_install _rel ease, using option
pur ge. This does the same check for old code. Then purges all modules that can be soft-purged. The purged
modules do then no longer have any old code, and i nst al | _r el ease does not need to do the checks.

This does not reduce the overall time for the upgrade, but it allows checks and purge to be executed in the
background before the real upgrade is started.

When upgrading the emulator from a version older than OTP R15, an attempt is made to load new application
beam code into the old emulator. Sometimes the new beam format cannot be read by the old emulator, so the code
loading fails and the complete upgrade is terminated. To overcome this problem, the new application codeisto be
compiled with the old emulator. For more information about emulator upgrade from pre OTP R15 versions, see
Design Principlesin System Documentation.

make_per manent (Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term)

Makes the specified release version Vsn permanent.

renove_rel ease(Vsn) -> ok | {error, Reason}
Types.
Vsn = string()
Reason = {permanent, Vsn} | client_node | tern()

Removes a release and its files from the system. The release must not be the permanent release. Removes only the
files and directories not in use by another release.

reboot ol d_rel ease(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term)

Reboots the system by making the old release permanent, and callsi ni t : r eboot () directly. The release must
have status ol d.

set _renoved(Vsn) -> ok | {error, Reason}

Types:
Vsn = string()

22 | Ericsso